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Abstract

The crystal structure of beef liver catalase was
determined ab initio in projection to 9 AÊ resolution
using electron diffraction data at room temperature
from hydrated specimens maintained in an environ-
mental chamber in the electron microscope. A conserva-
tive combination of symbolic addition with maximum
entropy and likelihood led to a model with a Patterson
correlation coef®cient C � 0:89 to the observed data.
This independent solution could then be compared
favorably to a previous 23 AÊ analysis of electron
micrographs from frozen hydrated preparations. Predic-
tion of the higher-resolution structure by extension of
the lower-resolution image-based phase basis set also
gave a good match to the direct-methods solution,
particularly for the most intense re¯ections.

1. Introduction

Electron crystallography is an important technique for
the characterization of proteins that are otherwise
dif®cult to crystallize with sample sizes suf®cient for
collection of X-ray intensity data. Much attention has
been devoted to the integral membrane proteins, largely
because two-dimensional crystalline sheets of the
macromolecule embedded in a lipid bilayer are most
conveniently prepared (Jap et al., 1992). Structural
results from pioneering high-resolution three-dimen-
sional electron crystallographic studies of integral
membrane proteins, such as bacteriorhodopsin (Kimura
et al., 1997) and the bacterial porins (Jap et al., 1991),
have been veri®ed recently by independent X-ray crystal
structure analyses of materials crystallized in the
presence of detergent (Pebay-Peyroula et al., 1997;
Cowan et al., 1992). Although there are weaknesses in
the electron crystallographic technique, primarily due to
the limited tilt of conventional electron-microscope
goniometer stages (Amos et al., 1982), it is now clear that
careful structure analyses, based on electron diffraction
amplitudes and the phases obtained from the Fourier
transform of experimental electron micrographs, will
lead to a viable result.

Direct phasing methods have been applied recently to
electron diffraction data from two-dimensional protein
crystals, partly to tackle the problem of ®nding the low-
resolution envelope of the macromolecule, in order to
differentiate it from a solvent space. Previous experi-
ence from X-ray crystallography had shown that, within
a low-resolution domain (e.g. within 6 AÊ ), conventional
direct methods are useful for extension of a basis set to
unphased re¯ections (Podjarny et al., 1981). This has also
been demonstrated in electron crystallography. For
example, the phases provided from an image transform
can be extended, with reasonable accuracy, to the
higher-resolution limit of the measured electron
diffraction data by a variety of techniques including
maximum entropy and likelihood (Gilmore et al., 1993)
and the Sayre equation (Dorset et al., 1995).

True ab initio phase determination via multisolution
techniques has also been successful. Convolutional
phasing methods or maximum entropy and likelihood
have been exploited and compared, and shown to give
equivalent results (Dorset, 1995a, 1996; Gilmore et al.,
1996). Following an early suggestion by Harker (1953),
properties of the scattering density in the macro-
molecule, such as the pseudo-atomic nature of globular
subunits, have also been exploited and, when applicable,
have been shown to be quite useful for ®nding e.g.
projected helix sites (Dorset, 1997a,b, 1998; Dorset &
Jap, 1998).

There is less experience in the determination of
soluble protein structures by electron crystallographic
methods. A signi®cant dif®culty can arise from the
crystallization of proteins in space groups in which
more than one protein layer, n, is found in the
projected unit-cell direction, where it is all too possible
to ®nd thin crystals with (mn� 1) layers. If m is small,
there can be extreme variations in the zonal intensities
measured in the electron diffraction patterns, not to
mention the violation of systematic absences expected
for a particular space group. One of the earliest exam-
ples of a soluble protein investigated in the electron
microscope, initially with negatively stained prep-
arations, was beef liver catalase (Valentine, 1964;
Vainshtein et al., 1976).
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Preparations of catalase embedded in glucose
(Unwin, 1975), as well as hydrated specimens quickly
frozen in a cryogen (Taylor & Glaeser, 1974), have been
extensively studied. There has also been an effort to
characterize hydrated specimens at room temperature,
utilizing a differentially pumped environmental
chamber to prevent the protein from dehydrating in the
microscope vacuum (Matricardi et al., 1972). While
electron diffraction data have been recorded to 2.8 AÊ

resolution, very little else has been performed with these
intensities except to demonstrate that they should
conform adequately to a kinematical scattering model to
permit a structure determination to be carried out
(Dorset & Parsons, 1975a). In this paper, the ®rst
attempt to analyze these intensity data is reported as a
test of ab initio phasing procedures.

2. Materials and methods

2.1. Catalase crystals

Beef liver catalase was recrystallized from a
commercial preparation (Boehringer Mannheim) using
a procedure described by Sumner & Dounce (1937),
except that no ammonium sulfate was used to bring
down the crystals. After solubilization and recrystalli-
zation at an acidic pH, plate-like crystals of the protein
were observed that were stable in distilled water. A
combination of methods (Dorset & Parsons, 1975b,c) to
measure the crystal thickness revealed that a skewed
Gaussian distribution, centered in the 100±160 nm
interval, was contained in a typical preparation. It was
possible, for example, to use a Beer's law relationship of
electron beam attenuation after a diffraction experiment
on a given crystal (Dorset & Parsons, 1975b) to estimate
the thickness of an individual crystalline object. Lat-
erally, the crystals measured, typically, 10 � 20 mm.

2.2. Electron diffraction

As described earlier (Dorset & Parsons, 1975a),
electron diffraction experiments were carried out at
200 kV using a JEOL JEM-200A electron microscope
®tted with a differentially pumped environmental
chamber. The ®rst demonstration of its ef®cacy for
obtaining useful diffraction results from this dehydra-
tion-sensitive protein was presented by Matricardi et al.
(1972). Electron diffraction patterns were recorded on a
sensitive screenless X-ray ®lm. After calibration against
a gold powder standard, the rectangular lattice constants
were observed to be a � 69.7, b � 177 AÊ , in agreement
with measurements made at other laboratories (Wrigley,
1968). Systematic absences along the reciprocal-lattice
rows were in accord with a pgg plane-group assignment,
also in agreement with the identi®ed space group,
P212121 (Unwin, 1975). It is clear, by inspection of the
lowest-angle diffraction region, that the intensity
distributions of the patterns from hydrated specimens

and glucose-embedded preparations are somewhat
different. [This was tested by our studies of glucose-
embedded preparations but can be veri®ed indepen-
dently by comparing results from other laboratories, e.g.
Unwin's (1975) work on saccharide-impregnated crys-
tals with Taylor's (1978) study of frozen hydrated crys-
tals.] Qualitatively, our electron diffraction intensities
from the hydrated specimens at room temperature
compare well with those in patterns from frozen
hydrated preparations (SchroÈ der & Burmester, 1993),
except that the former were screened to minimize the
appearance of space-group-forbidden re¯ections.

Films were scanned on ¯at-bed microdensitometers
(Joyce-Loebl Mk III C or CS) and an approximation of
the integrated intensity was made for the peak traces.
No Lorentz-type correction was applied. Using diffrac-
tion patterns extending to high resolution, as well as
those emphasizing the low-angle region, intensities from
a number of patterns were averaged to accumulate
a representative composite intensity set. Although,
compared to molecular organics, the crystals are very
¯at, compensation for Ewald-sphere curvature was not
considered to be important for the 9 AÊ resolution limit
of the structure determination, aided in part by low
electron wavelength. A plot of intensity averaged over
shells of sin �=� reveals a scattering characteristic typical
of many proteins (Pauling & Corey, 1951), i.e. a
minimum near d� � 6 AÊ ÿ1. As discussed earlier
(Podjarny et al., 1981; Dorset et al., 1995), phase deter-
mination within the ®rst intensity envelope is accessible
to direct methods. In all, 116 unique hk0 re¯ections were
considered.

Some error in the intensity average over a number of
diffraction patterns is expected. For example, the Rmerge

value for a composite intensity set to the one initially
analyzed [one of the diffraction patterns used for the
calculation of a Patterson map in the earlier study of
Dorset & Parsons (1975a)] is 0.27, which is a rather large
value that could be problematic for data collection from
small organics. The value of Rsym, on the other hand, was
generally more acceptable (<0:20), since an mm distri-
bution of intensity was imposed as a criterion in the
search for suitable diffraction patterns for use in the
average. The error in measured intensities is caused by a
number of experimental dif®culties. Primarily, it was all
too easy to tilt slightly the rod used to hold the specimen
in the environmental chamber, so that good zonal
patterns were sometimes dif®cult to ®nd. The Beer's law
estimate of crystal thickness by beam attenuation was
used to screen the patterns further. If the crystal was
found to be very thin, then a value that would corre-
spond to an odd number of layers (where two are in the
projected unit cell) would also be rejected. A plot of
determined crystal thicknesses indicated that the
projected unit-cell c dimension should be near 200 AÊ , in
agreement with the value 205 AÊ obtained from powder
X-ray patterns (Unwin, 1975). Although the problem
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affected many of the diffraction patterns recorded in
original work (less than 10% were found suitable for
consideration as sources of intensity data), the locations
of intense re¯ections in the low-angle diffraction pattern
again agreed very well with positions found in the
Fourier transform of an image taken of a frozen
hydrated specimen (Taylor, 1978) as well as other
published electron diffraction patterns (SchroÈ der &
Burmester, 1993). This point should be emphasized.
Efforts to improve the accuracy of electron diffraction
intensities from frozen hydrated samples have been
made recently (SchroÈ der & Burmester, 1993; Burmester
et al., 1995), including the use of energy ®ltration.

2.3. Data normalization and direct methods

In the direct phase determination, the results from
previous image analyses were ignored initially so that
the phase determination could truly test the application
of these methods on an `unknown' structure, without
readily available phase information from images at
hand. When, however, a comparison of phase results was
necessary, two papers reporting the results from the
frozen hydrated samples were consulted. In one (Akey
& Edelstein, 1983), a subset of phases had been
communicated to the authors by Dr K. Taylor. In
another paper (Taylor, 1978), the phase information
could be obtained directly after digitizing a published
electron micrograph via a fast charge-coupled-device
(CCD) camera for analysis with the computer program
package CRISP (HovmoÈ ller, 1992), providing values for
a few weaker re¯ections but otherwise agreeing
completely with the previously published table. Phase
values derived from this image deviated from the
distribution expected for a projected pgg symmetry by
only 12.1�.

For the direct phase analysis, it was assumed that the
protein density distribution could be simulated by an
aggregation of pseudo-atomic `globs' (Harker, 1953) to
suf®cient accuracy. As discussed in previous papers
utilizing this approximation (Dorset, 1997a,b, 1998), the
unit-cell constants were reduced by a factor of 10, so that
the glob transform could be modeled by the carbon
electron scattering factor. Thus, it is assumed that the
glob pro®le is nearly Gaussian. Intensity data to a 9 AÊ

limit (or 0.9 AÊ , after rescaling) were used to calculate a
Wilson plot, which indicated a negative overall dis-
placement parameter B � ÿ4:0 AÊ 2, used as a parameter
to rescale the scattering-factor model for calculation
of |Eh| values. (The negative displacement parameter is,
in itself, meaningless; it is merely a device to optimize
the shape of a phenomenological scattering factor.)
Previously, in the analysis of proteins with a high amount
of �-helix, and projecting down the helix axes, there was
a speci®c reason for the tenfold dimensional rescaling
(Dorset, 1997a,b, 1998; Dorset & Jap, 1998), i.e.
comparison of center-to-center distances for two

touching helices to the length of a carbon±carbon single
bond. In this application, the appropriateness of this
rescaling assumed, without prior proof, that there were
features of the catalase substructure that would conform
to this scattering-factor model. However, the approxi-
mate tenfold rescaling of macromolecular phasing
problems has been mentioned by other authors
(Podjarny & Urzhumtsev, 1997).

Since this is an unknown structure, the method of
®nding phase information from the recorded diffraction
intensity data was the most conservative approach
possible. In an overview, two direct phasing approaches
were used separately to ®nd possible phase values for a
subset of re¯ections (generally those with the largest
normalized structure-factor magnitudes). The results
from the identi®ed `best' solutions, established from a
criterion of map density ¯atness (see below), were then
compared. A potential map was then calculated from
the re¯ections common to both methods. From this map,
pseudo-atom peaks were used for a structure-factor
calculation, giving a phase set on a common basis for the
two approaches. These phases could then be compared
to the values obtained from the Fourier transform of
electron micrographs of frozen hydrated samples.

In the ®rst direct methods approach, after generation
of �2 three-phase invariants (`triples'), 'h � 'k � 'hÿk

symbolic addition (Karle & Karle, 1966) was used to
assign phase values to the 35 triples with largest values
of A � �2=N1=2�jEhEkEÿhÿkj, where N is the number of
`globs' in the unit cell. [Symbolic addition applied to
electron diffraction data sets is demonstrated in a recent
monograph (Dorset, 1995b).] After origin de®nition via
the assignments '550 � 0 and '630 � 0, two algebraic
terms ('690, '170) were included to assign phase values to
unknown re¯ections. Also, a value for another phase,
'060 � �, was indicated from a highly probable �1 phase
invariant, but it was not included in the basis set.
Potential maps generated from these trial phase sets
were evaluated using the Luzzati ®gure of merit (FOM)
h��4i (Luzzati et al., 1972). In this evaluation,
�� � �ÿ �, where the average map density, � � 0, is
established by setting F000 � 0:0 when computing
potential maps from the trial phases sets. As found in a
previous study (Dorset, 1996), this is not an absolutely
rigorous FOM for discriminating optimal phase sets
from multiple solutions, although it is nearly correct for
low-resolution phase determinations. It had been a
useful FOM in one ab initio phase determination of a
membrane protein, when the globular pseudo-atomic
approximation was not utilized (Dorset, 1995a).

In a second, separate, phase determination, the
maximum-entropy (ME) method, coupled with like-
lihood evaluation, was employed. The method is based
on the Bricogne (1984) formalism, as implemented by
Bricogne & Gilmore (1990) and reviewed in detail by
Gilmore (1996). This is a technique that can also begin
with origin-de®ning re¯ections (here values '140 � 0 and
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'170 � 0 were chosen). It then would proceed by testing
possible phase permutations for unassigned re¯ections
as `branches' of a `tree', which are then `pruned' by an
appropriate FOM, here the maximum likelihood. The
data were normalized using the MITHRIL computer
program (Gilmore, 1984) with a ®xed displacement
parameter B � 10:0 AÊ 2 to give a set of unitary structure
factors jUhjobs. The origin was de®ned, as for the
symbolic addition procedure described in the previous
paragraph, to generate the root node of a maximum
entropy phasing tree. Twelve re¯ections were given
permuted phase values in a full factorial design, thus
generating 212 � 4096 nodes on the second level of the
tree. Each one of these nodes or phase choices was
subjected to constrained entropy maximization, in which
the amplitudes and phases of the origin and permuted
re¯ections (the basis set) were used as the constraints,
using the MICE computer program (Gilmore &
Bricogne, 1997). The corresponding likelihood estimates
were analyzed (Shankland et al., 1993; Gilmore et al.,
1997), and those eight nodes with the highest scores
were kept, and the corresponding maps examined.
These centroid maps (Bricogne & Gilmore, 1990) were
computed as Sim-®ltered (Sim, 1959) U maps, where the
basis-set re¯ections contributed with full weight, and the
extrapolated re¯ections, predicted by the ME regular-
ization procedure, were given coef®cients, computed via

jUkjobs tanh�Xk� exp�i'ME
k �;

where

Xk � �N="k�jUkjobsjUME
k j

and 'ME
k is the phase angle predicted from the ME

optimization with a corresponding amplitude jUME
k j; N is

the number of atoms (`globs') in the unit cell and "k is
the statistical weight of re¯ection k. Although a limited
number of trial phase solutions were culled via the
maximum-likelihood criterion, the Luzzati FOM was
also chosen to select one of these, again acknowledging
that the effective imposition of density ¯atness may not
be a rigorous criterion. On the other hand, it was hoped
that the comparison of two independent phasing
methods would be somewhat self-correcting.

3. Results

A potential map at 9 AÊ resolution, based on phase
assignments for 26 unique re¯ections by symbolic
addition, is shown in Fig. 1(a). It is a phase solution that
corresponded to the lowest value of the Luzzati FOM.
In this, the value '060 � � agrees with the �1 estimate
cited above. On the other hand, the values '140 � � and
'170 � � are the reverse of the origin-de®ning re¯ec-
tions used for the maximum-entropy and likelihood
determination. There are similarities in the density
distributions in all 22 � 4 solutions.

Next, the maximum-entropy results were evaluated.
The maps from the top eight nodes, ranked by likelihood
scoring methods, were broadly similar and were also
clearly wrong since they exhibited strong density clus-
tered around the dyad axis, as shown in Fig. 1(b), based
on 52 phased structure-factor magnitudes. However, the
Babinet representation of the centroid maps, in which
each phase was shifted by �, exhibited a much more
uniform and homogeneous positive density, as shown
in Fig. 1(c). In this overlap re¯ection set from the
maximum-entropy solution, after the Babinet phase
shift, the shifted values of the two origin-de®ning
re¯ections, 140 and 170, are now in accord with the
identi®ed symbolic addition solution. Also, the matching
of the �1 estimates, as well as the one symbolic addition
origin-de®ning re¯ection, '550 � 0, found in the overlap
set, are in accord for the two determinations. For the
comparison of the determinations by the two methods,
®ve of 15 re¯ections differ in their phase assignments,
but the differences are expressed for medium-intensity
re¯ections and not for the strongest ones.

The Babinet-shift behavior is interesting, and only
seems to occur in a maximum-entropy phasing
environment where there are low-contrast diffraction
data from biological specimens, and may be a conse-
quence of the antiphase property of macromolecule and
solvent contributions to the structure factor at low
resolution (Podjarny & Urzhumtsev, 1997), particularly
for a crystal with a large solvent content. It was seen in
the study of Omp F porin (Gilmore et al., 1996),
although it was not as serious as found for the current
example. Choosing to invoke Babinet's principle here
was, in part, an imposition of the ¯atness criterion for
the positive density distribution; it might, therefore, be
expected that the preferred maps from the ME calcu-
lations would exhibit maximum entropy instead of
likelihood, but an analysis of node scores, based on the
latter criterion or a weighted sum of entropy and like-
lihood, was no more successful. Nonetheless, once the
Babinet map had been calculated, it provided a density
representation more in accord with the symbolic addi-
tion phase solution.

In order to compare the phase results from symbolic
addition with those from maximum entropy and like-
lihood, re¯ections from the corresponding `best' solu-
tions were chosen for calculation of potential maps. In
the case of maximum-entropy solutions, the subset with
overlaps to the symbolic addition phases was used (Fig.
1d), again corresponding to the lowest Luzzati FOM.
Peaks were taken from the maps as pseudo-atoms for
a structure-factor calculation Fh �

P
fC exp�2�ih � r�.

Again, after rescaling unit-cell parameters, it was
assumed that the carbon scattering factor, fC, adjusted
for the phenomenological displacement parameter,
would model the glob transform. The solutions were
then screened by a Patterson correlation coef®cient
(Drenth, 1994) de®ned as C �Pmomc

�P jmojjmcj,
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Fig. 1. Potential maps (approximately 9 AÊ resolution) after direct phasing: (a) symbolic addition, lowest h��4i; (b) maximum entropy and
likelihood, all assigned phases, lowest h��4i; (c) Babinet phases of previous solution (b); (d) subset of Babinet set in (c), where re¯ection
indices overlap with those used to generate (a).
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where mo � jFoj2 ÿ hjFoj2i, etc. (subscripts c and o
denote calculated and observed values, respectively).
This has been suggested to be a suitable FOM for
evaluating low-resolution phase determinations
(Podjarny & Urzhumtsev, 1997).

When peaks in the map generated from the complete
maximum-entropy solution were used as pseudo-atoms
in a structure-factor calculation (subset of 17 most
intense re¯ections), the Patterson correlation was, in
fact, negative, i.e. C � ÿ0:012. This solution, obviously,
is not a likely one. Peaks from a map generated with the
symbolic addition set (Fig. 1a) gave a reasonable value,
C � 0:74, but the map generated from the subset of
maximum-entropy phases, using re¯ections also
appearing in the symbolic addition sets (Fig. 1d), gave
the best value, C � 0:89. (The value is C � 0:85 when
the sample is expanded to 24 most intense re¯ections.)
Attempts to improve this ®gure by Fourier re®nement
were not successful; the correlation coef®cient did not
change very much. Thus, to a ®rst approximation, this
phase solution, of which the values for strongest
re¯ections are given in Table 1, would be thought to be
the best possible result from direct methods for this
protein. Note that the values of origin-de®ning re¯ec-
tions for maximum entropy, but Babinet-shifted, and
one of the symbolic addition origin-de®ning re¯ections,
are retained with their original values, as is the suggested
�1 phase. On the other hand, the symbolic addition
origin de®ner, '630, which did not appear on the overlap-
re¯ection list for combining the separate solutions, is
now shifted by �.

4. Discussion

While the magnitude of the Patterson correlation coef-
®cient for the phase solution in Table 1 compares well
with results from the recent analysis of a membrane
protein (Dorset & Jap, 1998), for which helix positions
were accurately located, how can this solution otherwise
be justi®ed? As shown by Unwin (1975), as well as Akey
& Edelstein (1983), the potential maps given for
orthorhombic catalase after analysis of images of
preparations embedded in negative or positive stains,
glucose or other media are quite variable in appearance
so that it is dif®cult to guess what is a correct structure.
[Correspondingly, there are signi®cant differences at
23 AÊ resolution for image-derived crystallographic
phases (Akey & Edelstein, 1983) from preparations
embedded in various media.] Radiation damage can also
affect the density distribution in the average image
(Unwin, 1975; Akey & Edelstein, 1983).

A 9 AÊ resolution density map of glucose-embedded
catalase has been published by Unwin & Henderson
(1975). Although there are some density features that
may also ®t our solution for hydrated catalase, there are
also signi®cant differences. Extraction of peak positions
from the glucose-embedded structure for structure-

factor calculation reveals that the Patterson correlation
(C � 0:35) is poorer than the solution found in this
analysis, consistent with the observed differences in the
electron diffraction patterns.

At this point, results from the earlier investigation of
the frozen hydrated structure (Taylor, 1978) were
consulted. (They had not been consulted during the
course of the direct phase analysis.) A comparison of
phases to 23 AÊ resolution from the image analysis of the
frozen hydrated specimen to the phases obtained from a
structure-factor calculation from the glob model is given
in Table 2. After shift of the image-derived phase set to
another permissible origin, in accord with the one used
for direct phase determination by maximum entropy
and likelihood, there are only six errors in a list of 18
re¯ections, none of which is associated with the stron-
gest re¯ections. The map generated from the phases
listed by Akey & Edelstein (1983) for the frozen
hydrated structure is shown in Fig. 2(a). The map from
the glob structure-factor phases, including the complete
list of re¯ections indicated in the CRISP phase deter-
mination from Taylor's (1978) image (agreeing with the
original published list but adding a few more re¯ec-
tions), is shown in Fig. 2(b). These density distributions
are virtually indistinguishable.

The similarity of the derived structure to the one
found from image analysis of frozen hydrated specimens

Table 1. Phases, '(electron diffraction), of 24 most
intense re¯ections for hydrated catalase after structure-

factor calculation

The phases '(electron diffraction) are compareed to another phase set,
'(Taylor, re®ned), from the extended image-based set, obtained after
re®nement via structure-factor calculation.

hk0 |Fo|
'(electron
diffraction)

'(Taylor,
re®ned)

0 2 0 6.87 0 0
0 4 0 8.46 � �
0 6 0 6.42 � �
0 10 0 3.03 � 0
0 16 0 3.73 � 0
0 18 0 4.72 � �
1 1 0 4.37 0 0
1 4 0 5.25 � �
1 7 0 4.59 � �
1 11 0 3.34 � �
1 14 0 3.12 � �
2 4 0 3.39 0 0
2 6 0 3.10 � �
3 2 0 3.12 0 �
3 5 0 3.13 0 �
3 7 0 3.23 � �
3 14 0 3.17 0 �
4 7 0 3.01 � �
5 4 0 3.24 � �
5 5 0 3.66 0 �
6 0 0 3.08 � �
6 3 0 3.14 � �
6 4 0 3.13 � �
7 3 0 3.18 � �
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could be demonstrated in another way. The Fourier
transform of the 23 AÊ resolution image was used as a
basis set for extension to the 9 AÊ resolution electron
diffraction amplitudes by the Sayre±Hughes equation
(Sayre, 1980), Eh � N1=2hEkEhÿki. After these new
phases were generated, the match with values for the 24
intense re¯ections used to calculate the Patterson
correlation coef®cients above was satis®ed by 15 data,
with the differences expressed in medium-intensity
re¯ections but not for the strong ones. The accuracy of
the phase extension is similar to the result found for
electron diffraction data from other proteins from a
lower-resolution basis (Gilmore et al., 1993; Dorset et al.,
1995; Dorset, 1996) or from X-ray data from a transfer
RNA, starting with an incomplete MIR phase set
(Podjarny et al., 1981).

If these extended phases were used to calculate a
potential map, and peak positions from this map were
chosen as pseudo-atoms to calculate structure factors,
the phase agreement was found for 18 out of 24 re¯ec-
tions (Table 1). The expanded image-derived model was
then compared to the phases from the structure-factor
calculation from peaks in Fig. 1(d). Note that some of

Fig. 2. Potential maps from 23 AÊ resolution phases. (a) Image-derived
phases from the list given by Akey & Edelstein (1983) based on
Taylor's (1978) work. The original origin de®nition is used. (b)
Phases from the direct phasing model after an origin shift.

Table 2. Comparison of image-derived phases, '(Taylor),
from frozen hydrated catalase to structure-factor phases,
'(electron diffraction), calculated from the direct phasing

model in Fig. 1(d)

hk0 |Fo|
'(electron
diffraction)² '(Taylor)³

0 2 0 6.87 0 0 0
0 4 0 8.46 � � �
0 6 0 6.42 � � �
0 8 0 1.95 � � (0)
1 1 0 4.37 0 0 0
1 2 0 2.56 0 0 0
1 3 0 2.95 0 0 �
1 4 0 5.25 � � �
1 5 0 0.50 0 0 0
1 6 0 0.80 � 0 0
1 7 0 4.59 � � 0
2 0 0 2.81 0 0 0
2 1 0 2.65 0 0 0
2 2 0 1.65 0 0 �
2 3 0 1.88 � 0 0
2 4 0 3.39 0 0 �
2 5 0 0.42 � � �
2 6 0 3.10 � � �
2 7 0 1.64 � � (�)
2 8 0 0.53 � � (�)
3 1 0 2.75 0 0 (0)
3 2 0 3.12 0 � �
3 3 0 2.71 � � (�)
3 4 0 1.92 � � (�)

² First column, phases from structure factors, using globs in Fig. 1(d);
second column, after one cycle of Fourier re®nement. ³ Phases in
parentheses are from the CRISP analysis of an electron-microscope
image of a frozen hydrated crystal published by Taylor (1978). Other
phases are from the CRISP analysis and/or a list given by Akey &
Edelstein (1983), which are in total agreement.
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the phases from the Taylor (1978) model changed value
after this re®nement. The Patterson correlation coef®-
cient was then C � 0:79. A complete list of phases is
given in Table 3 with associated structure-factor ampli-
tudes. Comparing those from the complete Fourier
transform of Fig. 1(d) to the re®ned 9 AÊ extension of
Taylor's 23 AÊ resolution image-based phase set, the
mean phase difference is 74.5� for 116 re¯ections.

5. Conclusions

This direct analysis of a globular protein crystal struc-
ture from electron diffraction data indicates that the
solution of an `unknown' structure is indeed possible if a
rather conservative approach is used for accepting
structure solutions, after comparing results from two
independent methods for phase determination. It also

requires that the pseudo-atomic globular transform
model is appropriate for the molecule. As seen in earlier
analyses, the Luzzati ®gure of merit has approximate
validity and is appropriate for screening choices among
multiple solutions. The Patterson correlation coef®cient
is also a useful indicator for choosing one solution over
another. After the assignment of phase values, there was
a reasonable agreement with the phase model found
from image analysis of frozen hydrated specimens.

Research was supported in part by a grant from the
National Institute for General Medical Sciences (GM-
46733). DLD thanks Dr D. F. Parsons for suggesting this
problem a quarter of a century ago.

Table 3. Final listing of amplitudes and phases for re®ned structural model

Phases from Fourier transform of Fig. 1(d).

hk0 |F | ' hk0 |F | ' hk0 |F | '

0 2 0 6.87 0 2 12 0 0.85 0 4 14 0 2.05 �²
0 4 0 8.46 � 2 13 0 0.45 0² 4 15 0 1.19 0²
0 6 0 6.42 � 2 14 0 2.46 0 4 16 0 1.02 �²
0 8 0 1.95 �² 2 15 0 2.11 0² 5 1 0 1.49 �
0 10 0 3.03 �² 2 17 0 0.75 0 5 2 0 0.87 0²
0 12 0 0.72 0 2 18 0 1.09 0² 5 3 0 1.33 �²
0 14 0 2.12 0² 2 19 0 0.46 � 5 4 0 3.24 �
0 16 0 3.73 �² 3 1 0 2.75 0² 5 5 0 3.66 0²
0 18 0 4.72 � 3 2 0 3.12 0² 5 6 0 1.34 �²
1 1 0 4.37 0 3 3 0 2.71 � 5 7 0 0.68 �²
1 2 0 2.56 0 3 4 0 1.92 � 5 8 0 1.39 0
1 3 0 2.95 0 3 5 0 3.13 0² 5 9 0 2.63 0
1 4 0 5.25 � 3 6 0 2.70 �² 5 10 0 1.40 0
1 5 0 0.50 0 3 7 0 3.23 � 5 11 0 2.40 0²
1 6 0 0.80 � 3 8 0 2.60 �² 5 12 0 1.04 �²
1 7 0 4.59 � 3 9 0 2.16 0 5 13 0 0.97 �²
1 9 0 2.05 � 3 10 0 0.75 0 5 14 0 1.10 �²
1 10 0 1.58 0 3 11 0 0.30 �² 5 15 0 1.02 �²
1 11 0 3.34 � 3 12 0 1.01 � 6 0 0 3.08 �
1 12 0 0.62 0 3 13 0 1.19 0 6 1 0 0.24 0²
1 13 0 1.07 � 3 14 0 3.17 0² 6 2 0 0.53 �
1 14 0 3.12 � 3 15 0 1.10 0² 6 3 0 3.14 �
1 15 0 0.59 0 3 16 0 0.78 0² 6 4 0 3.13 �
1 16 0 0.73 0² 3 17 0 0.50 �² 6 5 0 2.44 0
1 17 0 1.12 0 3 18 0 0.53 � 6 6 0 2.80 0
1 18 0 1.08 0 4 0 0 2.86 0 6 7 0 2.63 �²
1 19 0 0.63 � 4 1 0 2.69 �² 6 8 0 2.77 0
2 0 0 2.81 0 4 2 0 2.14 � 6 9 0 2.90 �²
2 1 0 2.65 0 4 3 0 0.88 � 6 10 0 2.22 0²
2 2 0 1.68 0² 4 4 0 2.57 � 6 11 0 1.14 0²
2 3 0 1.88 � 4 5 0 2.67 0 6 12 0 1.25 �
2 4 0 3.39 0 4 6 0 2.63 � 7 1 0 2.30 �²
2 5 0 0.42 �² 4 7 0 3.01 � 7 2 0 2.26 �²
2 6 0 3.10 � 4 8 0 2.24 �² 7 3 0 3.18 �
2 7 0 1.64 � 4 9 0 2.71 � 7 4 0 1.99 0
2 8 0 0.53 �² 4 10 0 2.41 0² 7 5 0 0.75 0²
2 9 0 0.74 � 4 11 0 1.33 0² 7 6 0 2.30 0²
2 10 0 0.98 � 4 12 0 1.92 0 7 7 0 0.40 0
2 11 0 0.47 0² 4 13 0 2.31 0

² Differences found in re®nement with Sayre expansion of image phases.
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